Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
2.
Bioessays ; 46(4): e2300109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461519

RESUMO

Antigen presentation to CD8+ T cells by MHC class I molecules is essential for host defense against viral infections. Various mechanisms have evolved in multiple viruses to escape immune surveillance and defense to support viral proliferation in host cells. Through in vitro SARS-CoV-2 infection studies and analysis of COVID-19 patient samples, we found that SARS-CoV-2 suppresses the induction of the MHC class I pathway by inhibiting the expression and function of NLRC5, a major transcriptional regulator of MHC class I genes. In this review, we discuss the molecular mechanisms for suppression of the MHC class I pathway and clinical implications for COVID-19.


Assuntos
COVID-19 , Genes MHC Classe I , Humanos , Transativadores/genética , SARS-CoV-2/genética , COVID-19/genética , Antígenos de Histocompatibilidade Classe I , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Proc Natl Acad Sci U S A ; 121(6): e2310821121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300873

RESUMO

Impaired expression of MHC (major histocompatibility complex) class I in cancers constitutes a major mechanism of immune evasion. It has been well documented that the low level of MHC class I is associated with poor prognosis and resistance to checkpoint blockade therapies. However, there is lmited approaches to specifically induce MHC class I to date. Here, we show an approach for robust and specific induction of MHC class I by targeting an MHC class I transactivator (CITA)/NLRC5, using a CRISPR/Cas9-based gene-specific system, designated TRED-I (Targeted reactivation and demethylation for MHC-I). The TRED-I system specifically recruits a demethylating enzyme and transcriptional activators on the NLRC5 promoter, driving increased MHC class I antigen presentation and accelerated CD8+ T cell activation. Introduction of the TRED-I system in an animal cancer model exhibited tumor-suppressive effects accompanied with increased infiltration and activation of CD8+ T cells. Moreover, this approach boosted the efficacy of checkpoint blockade therapy using anti-PD1 (programmed cell death protein) antibody. Therefore, targeting NLRC5 by this strategy provides an attractive therapeutic approach for cancer.


Assuntos
Genes MHC Classe I , Neoplasias , Animais , Genes MHC Classe I/genética , Antígenos de Histocompatibilidade Classe I , Transativadores/metabolismo , Neoplasias/genética , Desmetilação
4.
Biotechnol Bioeng ; 121(1): 219-227, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37807712

RESUMO

Methods for culturing oxygen-sensitive cells and organisms under anaerobic conditions are vital to biotechnology research. Here, we report a biomaterial-based platform for anaerobic culture that consists of glucose oxidase (GOX) functionalized alginate microparticles (ALG-GOX), which are designed to deplete dissolved [O2 ] through enzymatic activity. ALG-GOX microparticles were synthesized via a water-in-oil emulsion and had a size of 132.0 ± 51.4 µm. Despite having a low storage modulus, the microparticles remained stable under aqueous conditions due to covalent crosslinking through amide bonds. Enzyme activity was tunable based on the loaded GOX concentration, with a maximum activity of 3.6 ± 0.3 units/mg of microparticles being achieved at an initial loading concentration of 5 mg/mL of GOX in alginate precursor solution. High enzyme activity in ALG-GOX microparticles resulted in rapid oxygen depletion, producing a suitable environment for anaerobic culture. Microparticles loaded with both GOX and catalase (ALG-GOX-CAT) to reduce H2 O2 buildup exhibited sustained activity for potential long-term anaerobic culture. ALG-GOX-CAT microparticles were highly effective for the anaerobic culture of Bacteroides thetaiotaomicron, with 10 mg/mL of ALG-GOX-CAT microparticles supporting the same level of growth in an aerobic environment compared to an anaerobic chamber after 16 h (8.70 ± 0.96 and 10.03 ± 1.03 million CFU, respectively; N.S. p = 0.07). These microparticles could be a valuable tool for research and development in biotechnology.


Assuntos
Alginatos , Técnicas de Cultura de Células , Alginatos/química , Anaerobiose , Glucose Oxidase/química
5.
Signal Transduct Target Ther ; 8(1): 415, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875468

RESUMO

CD4+ T cells, particularly IL-17-secreting helper CD4+ T cells, play a central role in the inflammatory processes underlying autoimmune disorders. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is pivotal in CD8+ T cells and has important implications in vascular dysfunction and inflammation-related diseases such as hypertension. However, its specific immunological role in CD4+ T cell activities and related inflammatory diseases remains elusive. Our investigation has uncovered that the deficiency of eEF2K disrupts the survival and proliferation of CD4+ T cells, impairs their ability to secrete cytokines. Notably, this dysregulation leads to heightened production of pro-inflammatory cytokine IL-17, fosters a pro-inflammatory microenvironment in the absence of eEF2K in CD4+ T cells. Furthermore, the absence of eEF2K in CD4+ T cells is linked to increased metabolic activity and mitochondrial bioenergetics. We have shown that eEF2K regulates mitochondrial function and CD4+ T cell activity through the upregulation of the transcription factor, signal transducer and activator of transcription 3 (STAT3). Crucially, the deficiency of eEF2K exacerbates the severity of inflammation-related diseases, including rheumatoid arthritis, multiple sclerosis, and ulcerative colitis. Strikingly, the use of C188-9, a small molecule targeting STAT3, mitigates colitis in a murine immunodeficiency model receiving eEF2K knockout (KO) CD4+ T cells. These findings emphasize the pivotal role of eEF2K in controlling the function and metabolism of CD4+ T cells and its indispensable involvement in inflammation-related diseases. Manipulating eEF2K represents a promising avenue for novel therapeutic approaches in the treatment of inflammation-related disorders.


Assuntos
Quinase do Fator 2 de Elongação , Interleucina-17 , Camundongos , Animais , Interleucina-17/genética , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Inflamação/genética , Linfócitos T CD4-Positivos
7.
J Med Virol ; 95(7): e28957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465969

RESUMO

Nucleus accumbens-associated protein 1 (NAC1), a transcriptional cofactor, has been found to play important roles in regulating regulatory T cells, CD8+ T cells, and antitumor immunity, but little is known about its effects on T-cell memory. In this study, we found that NAC1 expression restricts memory formation of CD4+ T cells during viral infection. Analysis of CD4+ T cells from wild-type (WT) and NAC1-deficient (-/- ) mice showed that NAC1 is essential for T-cell metabolism, including glycolysis and oxidative phosphorylation, and supports CD4+ T-cell survival in vitro. We further demonstrated that a deficiency of NAC1 downregulates glycolysis and correlates with the AMPK-mTOR pathway and causes autophagy defective in CD4+ T cells. Loss of NAC1 reduced the expression of ROCK1 and the phosphorylation and stabilization of BECLIN1. However, a forced expression of ROCK1 in NAC1-/- CD4+ T cells restored autophagy and the activity of the AMPK-mTOR pathway. In animal experiments, adoptively transferred NAC1-/- CD4+ T cells or NAC1-/- mice challenged with VACV showed enhanced formation of VACV-specific CD4+ memory T cells compared to adoptively transferred WT CD4+ T cells or WT mice. This memory T-cell formation enhancement was abrogated by forcing expression of ROCK1. Our study reveals a novel role for NAC1 as a suppressor of CD4+ T-cell memory formation and suggests that targeting NAC1 could be a new approach to promoting memory CD4+ T-cell development, which is critical for an effective immune response against pathogens.


Assuntos
Proteínas Quinases Ativadas por AMP , Linfócitos T CD8-Positivos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos , Sobrevivência Celular , Memória Imunológica , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
8.
Sci Rep ; 13(1): 6021, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055450

RESUMO

Limited data significantly hinders our capability of biothreat assessment of novel bacterial strains. Integration of data from additional sources that can provide context about the strain can address this challenge. Datasets from different sources, however, are generated with a specific objective and which makes integration challenging. Here, we developed a deep learning-based approach called the neural network embedding model (NNEM) that integrates data from conventional assays designed to classify species with new assays that interrogate hallmarks of pathogenicity for biothreat assessment. We used a dataset of metabolic characteristics from a de-identified set of known bacterial strains that the Special Bacteriology Reference Laboratory (SBRL) of the Centers for Disease Control and Prevention (CDC) has curated for use in species identification. The NNEM transformed results from SBRL assays into vectors to supplement unrelated pathogenicity assays from de-identified microbes. The enrichment resulted in a significant improvement in accuracy of 9% for biothreat. Importantly, the dataset used in our analysis is large, but noisy. Therefore, the performance of our system is expected to improve as additional types of pathogenicity assays are developed and deployed. The proposed NNEM strategy thus provides a generalizable framework for enrichment of datasets with previously collected assays indicative of species.


Assuntos
Bactérias , Redes Neurais de Computação , Estados Unidos
9.
J Transl Autoimmun ; 6: 100198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090898

RESUMO

Autoimmune diseases such as rheumatoid arthritis and type 1 diabetes are increasingly common global problems. Concerns about increases in the prevalence of such diseases and the limited efficacy of conventional treatment regimens necessitates new therapies to address these challenges. Autoimmune disease severity and dysbiosis are interconnected. Although probiotics have been established as a therapy to rebalance the microbiome and suppress autoimmune symptoms, these microbes tend to lack a number of advantageous qualities found in non-commensal bacteria. Through attenuation and genetic manipulation, these non-commensal bacteria have been engineered into recombinant forms that offer malleable platforms capable of addressing the immune imbalances found in RA and T1D. Such bacteria have been engineered to express valuable gene products known to suppress autoimmunity such as anti-inflammatory cytokines, autoantigens, and enzymes synthesizing microbial metabolites. This review will highlight current and emerging trends in the field and discuss how they may be used to prevent and control autoimmune diseases.

10.
Microbiol Spectr ; : e0346222, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847511

RESUMO

This is the first detailed characterization of the microbiota and chemistry of different arid habitats from the State of Qatar. Analysis of bacterial 16S rRNA gene sequences showed that in aggregate, the dominant microbial phyla were Actinobacteria (32.3%), Proteobacteria (24.8%), Firmicutes (20.7%), Bacteroidetes (6.3%), and Chloroflexi (3.6%), though individual soils varied widely in the relative abundances of these and other phyla. Alpha diversity measured using feature richness (operational taxonomic units [OTUs]), Shannon's entropy, and Faith's phylogenetic diversity (PD) varied significantly between habitats (P = 0.016, P = 0.016, and P = 0.015, respectively). Sand, clay, and silt were significantly correlated with microbial diversity. Highly significant negative correlations were also seen at the class level between both classes Actinobacteria and Thermoleophilia (phylum Actinobacteria) and total sodium (R = -0.82 and P = 0.001 and R = -0.86, P = 0.000, respectively) and slowly available sodium (R = -0.81 and P = 0.001 and R = -0.8 and P = 0.002, respectively). Additionally, class Actinobacteria also showed significant negative correlation with sodium/calcium ratio (R = -0.81 and P = 0.001). More work is needed to understand if there is a causal relationship between these soil chemical parameters and the relative abundances of these bacteria. IMPORTANCE Soil microbes perform a multitude of essential biological functions, including organic matter decomposition, nutrient cycling, and soil structure preservation. Qatar is one of the most hostile and fragile arid environments on earth and is expected to face a disproportionate impact of climate change in the coming years. Thus, it is critical to establish a baseline understanding of microbial community composition and to assess how soil edaphic factors correlate with microbial community composition in this region. Although some previous studies have quantified culturable microbes in specific Qatari habitats, this approach has serious limitations, as in environmental samples, approximately only 0.5% of cells are culturable. Hence, this method vastly underestimates natural diversity within these habitats. Our study is the first to systematically characterize the chemistry and total microbiota associated with different habitats present in the State of Qatar.

11.
Lab Chip ; 23(4): 671-683, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227118

RESUMO

Inter-kingdom endosymbiotic interactions between bacteria and eukaryotic cells are critical to human health and disease. However, the molecular mechanisms that drive the emergence of endosymbiosis remain obscure. Here, we describe the development of a microfluidic system, named SEER (S̲ystem for the E̲volution of E̲ndosymbiotic R̲elationships), that automates the evolutionary selection of bacteria with enhanced intracellular survival and persistence within host cells, hallmarks of endosymbiosis. Using this system, we show that a laboratory strain of Escherichia coli that initially possessed limited abilities to survive within host cells, when subjected to SEER selection, rapidly evolved to display a 55-fold enhancement in intracellular survival. Notably, molecular dissection of the evolved strains revealed that a single-point mutation in a flexible loop of CpxR, a gene regulator that controls bacterial stress responses, substantially contributed to this intracellular survival. Taken together, these results establish SEER as the first microfluidic system for investigating the evolution of endosymbiosis, show the importance of CpxR in endosymbiosis, and set the stage for evolving bespoke inter-kingdom endosymbiotic systems with novel or emergent properties.


Assuntos
Bactérias , Simbiose , Humanos , Simbiose/genética , Bactérias/genética
12.
Gut Microbes ; 14(1): 2143222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404471

RESUMO

Immunotherapy has led to impressive advances in the treatment of autoimmune and pro-inflammatory disorders; yet, its clinical outcomes remain limited by a variety of factors including the pro-inflammatory microenvironment (IME). Discovering effective immunomodulatory agents, and the mechanisms by which they control disease, will lead to innovative strategies for enhancing the effectiveness of current immunotherapeutic approaches. We have metabolically engineered an attenuated bacterial strain (i.e., Brucella melitensis 16M ∆vjbR, Bm∆vjbR::tnaA) to produce indole, a tryptophan metabolite that controls the fate and function of regulatory T (Treg) cells. We demonstrated that treatment with Bm∆vjbR::tnaA polarized macrophages (Mφ) which produced anti-inflammatory cytokines (e.g., IL-10) and promoted Treg function; moreover, when combined with adoptive cell transfer (ACT) of Treg cells, a single treatment with our engineered bacterial strain dramatically reduced the incidence and score of autoimmune arthritis and decreased joint damage. These findings show how a metabolically engineered bacterium can constitute a powerful vehicle for improving the efficacy of immunotherapy, defeating autoimmunity, and reducing inflammation by remodeling the IME and augmenting Treg cell function.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Humanos , Inflamação , Citocinas/metabolismo , Linfócitos T Reguladores , Bactérias/metabolismo
13.
Anal Chem ; 94(38): 13197-13204, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36108268

RESUMO

Microbial interactions within a natural or engineered consortium of microbes play an important role in the functions of the consortium. Better understanding these interactions is also important for engineering microbial consortia for specific applications. As such, tools that can enable investigating microbial interactions are highly valuable. One aspect of microbial interactions that impacts community formation is how the spatial organization of individual microbes impacts interactions leading to community formation. Here, we report the development of a tool that can manipulate the spatial organization of microorganisms to investigate the role of these interactions in community formation. Our developed microfluidic platform utilizes dielectrophoretic (DEP) force to perform on-demand spatial arrangement of microorganism-encapsulated agarose gel microparticles. To demonstrate this concept, three gel microparticle manipulators composed of three independently controllable DEP electrodes were utilized for the on-demand spatial arrangement of a specific combination of microparticles, each containing Escherichia coli cells expressing red fluorescence protein, green fluorescent protein, or blank content. The spatially arranged microparticles suspended in carrier oil were first trapped in a downstream particle trapping structure to form a defined microparticle array, followed by the application of an electric field to disrupt the carrier oil barrier so that all gel microparticles were within the same aqueous solution while the individual gel microparticles remain intact, thereby maintaining their spatial arrangements. We demonstrated that this method can be utilized to generate various arrays with differing number of "spacer microparticles", which were blank microparticles, between the two different E. coli-containing microparticles, enabling precise control over spatial distances between the two different cell populations. This method paves the way for more easily investigating bacterial interactions, especially those that depend on their spatial arrangement such as where cell-cell communication plays a major role.


Assuntos
Escherichia coli , Microfluídica , Bactérias , Proteínas de Fluorescência Verde/genética , Sefarose
14.
Proc Natl Acad Sci U S A ; 119(36): e2208378119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037346

RESUMO

The widespread use of antibiotics drives the evolution of antimicrobial-resistant bacteria (ARB), threatening patients and healthcare professionals. Therefore, the development of novel strategies to combat resistance is recognized as a global healthcare priority. The two methods to combat ARB are development of new antibiotics or reduction in existing resistances. Development of novel antibiotics is a laborious and slow-progressing task that is no longer a safe reserve against looming risks. In this research, we suggest a method for reducing resistance to extend the efficacious lifetime of current antibiotics. Antimicrobial photodynamic therapy (aPDT) is used to generate reactive oxygen species (ROS) via the photoactivation of a photosensitizer. ROS then nonspecifically damage cellular components, leading to general impairment and cell death. Here, we test the hypothesis that concurrent treatment of bacteria with antibiotics and aPDT achieves an additive effect in the elimination of ARB. Performing aPDT with the photosensitizer methylene blue in combination with antibiotics chloramphenicol and tetracycline results in significant reductions in resistance for two methicillin-resistant Staphylococcus aureus (MRSA) strains, USA300 and RN4220. Additional resistant S. aureus strain and antibiotic combinations reveal similar results. Taken together, these results suggest that concurrent aPDT consistently decreases S. aureus resistance by improving susceptibility to antibiotic treatment. In turn, this development exhibits an alternative to overcome some of the growing MRSA challenge.


Assuntos
Resistência Microbiana a Medicamentos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos da radiação , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/farmacologia
15.
Sci Adv ; 8(27): eabc9108, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857442

RESUMO

Droplet microfluidic systems have been widely deployed to interrogate biological and chemical systems. The major limitations of these systems are the relatively high error rates from critical droplet manipulation functions. To address these limitations, we describe the development of FIDELITY (Flotation and Interdigitated electrode forces on Droplets to Enable Lasting system IntegriTY), a highly sensitive and accurate size-based droplet bandpass filter that leverages the natural buoyancy of aqueous droplets and highly localized dielectrophoretic force generated by interdigitated electrode arrays. Droplet manipulation accuracies greater than 99% were achieved at a throughput of up to 100 droplets/s and separation of droplets that differed in diameter by only 6 µm was demonstrated. Last, the utility of FIDELITY was demonstrated in a droplet size quality control application and also in a droplet-based in vitro transcription/translation workflow. We anticipate FIDELITY to be integrated into a broad range of droplet microfluidic configurations to achieve exceptional operational accuracy.

16.
Sci Adv ; 8(26): eabo0183, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767626

RESUMO

We report here that nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the Broad-complex, Tramtrack, Bric-a-brac/poxvirus and zinc finger (BTB/POZ) gene family, is a negative regulator of FoxP3 in regulatory T cells (Tregs) and a critical determinant of immune tolerance. Phenotypically, NAC1-/- mice showed substantial tolerance to the induction of autoimmunity and generated a larger amount of CD4+ Tregs that exhibit a higher metabolic profile and immune-suppressive activity, increased acetylation and expression of FoxP3, and slower turnover of this transcription factor. Treatment of Tregs with the proinflammatory cytokines interleukin-1ß or tumor necrosis factor-α induced a robust up-regulation of NAC1 but evident down-regulation of FoxP3 as well as the acetylated FoxP3. These findings imply that NAC1 acts as a trigger of the immune response through destabilization of Tregs and suppression of tolerance induction, and targeting of NAC1 warrants further exploration as a potential tolerogenic strategy for treatment of autoimmune disorders.

17.
Elife ; 112022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587649

RESUMO

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Assuntos
Brucella , Brucelose , Animais , Brucelose/metabolismo , Brucelose/microbiologia , Endorribonucleases/metabolismo , Endossomos/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases
18.
Proc Natl Acad Sci U S A ; 119(14): e2112886119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363569

RESUMO

Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.


Assuntos
Bactérias , Genoma Bacteriano , Aprendizado de Máquina , Fatores de Virulência , Sequenciamento Completo do Genoma , Bactérias/genética , Bactérias/patogenicidade , Fenótipo , Virulência/genética , Fatores de Virulência/genética
19.
Sci Adv ; 8(5): eabl9783, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108044

RESUMO

eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.


Assuntos
Linfócitos T CD8-Positivos , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Fatores de Alongamento de Peptídeos
20.
Nat Commun ; 12(1): 6602, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782627

RESUMO

The MHC class I-mediated antigen presentation pathway plays a critical role in antiviral immunity. Here we show that the MHC class I pathway is targeted by SARS-CoV-2. Analysis of the gene expression profile from COVID-19 patients as well as SARS-CoV-2 infected epithelial cell lines reveals that the induction of the MHC class I pathway is inhibited by SARS-CoV-2 infection. We show that NLRC5, an MHC class I transactivator, is suppressed both transcriptionally and functionally by the SARS-CoV-2 ORF6 protein, providing a mechanistic link. SARS-CoV-2 ORF6 hampers type II interferon-mediated STAT1 signaling, resulting in diminished upregulation of NLRC5 and IRF1 gene expression. Moreover, SARS-CoV-2 ORF6 inhibits NLRC5 function via blocking karyopherin complex-dependent nuclear import of NLRC5. Collectively, our study uncovers an immune evasion mechanism of SARS-CoV-2 that targets the function of key MHC class I transcriptional regulators, STAT1-IRF1-NLRC5.


Assuntos
COVID-19/imunologia , Genes MHC Classe I/imunologia , Fator Regulador 1 de Interferon/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , SARS-CoV-2/genética , Fator de Transcrição STAT1/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Transdução de Sinais , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...